\r\n\r\n\r\nDeep Sea Explorations <\/h1>\r\nA Short Course Using Lessons from FOR SEA, MARE and Living in Water<\/i><\/h3>\r\nTable of Contents<\/u><\/h2>\r\nClick on a lesson title to view the complete lesson as a pdf.<\/b><\/p>\r\n Want to customize the lesson? Click on the “ ” icon that follows the lesson overview to download the lesson as an editable Word document<\/i><\/p>\r\n \r\n<\/center>\r\n<\/td>\r\n<\/tr>\r\n\r\nIntroduction<\/u><\/a><\/b><\/td><\/tr>\r\n | Unit 1: Plate Tectonics<\/u><\/b><\/font>\r\n \r\n<\/p>\r\n 1. Reunite Pangaea<\/a><\/b><\/font><\/dt>\r\nStudents examine 10 pieces of evidence for the theory of plate tectonics and then use these as guides in cutting apart a modern map and reconstructing the super-continent of Pangaea.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 2. The Plot Thickens – Paleomagnetism<\/a><\/b><\/font><\/dt>\r\nStudents plot the patterns of magnetic anomalies found in the ocean floor.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 3. The Force<\/a><\/b><\/font><\/dt>\r\nConvection currents are observed in a heated beaker of water.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 4. Slippin’ and Slidin’ – Plate Tectonics<\/a><\/b><\/font><\/dt>\r\nA student reading with embedded questions summarizes the evidence supporting the theory of crustal plate movement.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 5. Packages: 3-D Earth Model<\/a><\/b><\/font><\/dt>\r\nStudents create a three-dimensional cross-section of the earth\u2019s crust. \r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n Unit 2: Bottom Features<\/u><\/b><\/font>\r\n<\/p>\r\n 6. Deep Sounds<\/a><\/b><\/font><\/dt>\r\nAn introductory reading and vocabulary puzzle emphasize the similarity between ocean floor topography and land topography.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 7. ‘Sounds Good to Me’<\/a><\/b><\/font><\/dt>\r\nStudents transform echo sounding data into a bottom profile.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 8. Retracing the Steps of Columbus<\/a><\/b><\/font><\/dt>\r\nUsing echo sounding data, students construct a bottom profile of the Atlantic ocean basin. \r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 9. The World’s Smallest Ocean<\/a><\/b><\/font><\/dt>\r\nStudents build an ocean floor model in a shoebox, then “sound” the depths for seamounts, etc.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n Alternative lab: If I Can\u2019t See It, How Do I Know It\u2019s There?<\/a><\/b><\/dd>\r\nStudents craft ocean bottom features in the bottom of shoeboxes and then trade covered boxes. Students probe the shoebox topography through holes in the shoebox lids and map the hidden ocean floors their classmates created.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 10. Mountain Making – Topographic Maps<\/a><\/b><\/font><\/dt>\r\nUsing a “mountain” of modeling clay, students cut off horizontal layers to create a topographic map of the mountain.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 11. Contours<\/a><\/b><\/font><\/dt>\r\nStudents create a bathymetric map, then use this map to create a 3-D model of the area shown on the map. \r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n Unit 3: Getting there \u2013 History of Seafloor Exploration<\/u><\/b><\/font><\/dt>\r\n<\/p>\r\n 12. Explorers of the Ocean Depths: The Challenger Expedition of 1872-1876<\/a><\/b><\/font><\/dt>\r\nStudents read and interpret an article about the first major scientific expedition to systematically gather data about the oceans.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 13. Designing Deep Sea Life<\/a><\/b><\/font><\/dt>\r\nBased on the information available to early scientists, students design and draw an organism that could live in the deep sea.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 14. Depth Line<\/a><\/b><\/font><\/dt>\r\nStudents make a scale of ocean depth on a 4 meter length of adding machine tape, placing labels along the scale indicating notable events.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 15. The Ocean Floor<\/a><\/b><\/font><\/dt>\r\nThis reading describes some of the technology oceanographers use to map the ocean bottom and outlines major ocean floor features. \r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 16. Underwater exploration<\/a><\/b><\/font><\/dt>\r\nHow is modern technology being used to study the physical, geological, chemical and biological nature of the oceans? Research project on technology and its applications.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n Unit 4: Chemosynthesis<\/u><\/b><\/font>\r\n<\/p>\r\n 17. Glowing in the Dark: Bioluminescence<\/a><\/b><\/font><\/dt>\r\nStudents culture bioluminescent bacteria. \r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 18. Marine Bacteriology<\/a><\/b><\/font><\/dt>\r\nStudents culture a variety of marine organisms as they learn sterile technique.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 19. Symbiosis in the Deep Sea \u2013 Three-Level Guide<\/a><\/b><\/font><\/dt>\r\nThis journal article introduces students to the chemosynthesis-based food webs of the deep sea hydrothermal vents.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 20. Chemicals or Light – Chemosynthesis\/Photosynthesis<\/a><\/b><\/font><\/dt>\r\nSimple chemical equations are used to compare photosynthesis and chemosynthesis as primary production processes.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 21. The Mating Game<\/a><\/b><\/font><\/dt>\r\nStudents play a hydrothermal vent game based on the TV show “Dating Game”.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n Unit 5: Deep Sea Biology<\/u><\/b><\/font>\r\n<\/p>\r\n 22. Creatures of the Abyss<\/a><\/b><\/font><\/dt>\r\nStudents review sunlight-based food webs and how marine snow, or detritus, moves energy and nutrients from shallow waters to the deep sea. Students are introduced to the bizarre animals of the abyss who depend on this marine snow.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 23. Light to sea by<\/a><\/b><\/font><\/dt>\r\nWhat happens to light when it shines through water?\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 24. Hide and seek<\/a><\/b><\/font><\/dt>\r\nWhat does it look like under water? What do animals see? Is camouflage the same below water as above? \r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 25. Properties of the Deep Sea<\/a><\/b><\/font><\/dt>\r\nStudents use colored acetate sheets to simulate the color filtering effect of sea water depth, and to see how fish use this effect as camouflage.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 26. Red Fish Roundup<\/a><\/b><\/font><\/dt>\r\nStudents wear blue cellophane goggles to simulate the light conditions during an underwater diving experience while searching for camouflaged fish.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 27. The Pressure\u2019s On!<\/a><\/b><\/font><\/dt>\r\nThis reading describes the tremendous pressures animals experience in the deep sea and explores selected deep sea fish adaptations.\r\n <\/a>\r\n<\/p>\r\n Alternative lab: Grace under pressure<\/a><\/b><\/dd>\r\nDoes water pressure vary with depth?\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n Alternative lab: How Low Can You Go?<\/a><\/b><\/dd>\r\nStudents are introduced to the tremendous pressures and darkness of the deep sea by exploring the structural adaptations of the deep sea Angler Fish.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 28. Deep Sea Trawl Simulation<\/a><\/b><\/font><\/dt>\r\nStudent teams conduct simulated trawls in the deep sea. Budgets are limited. \r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 29. Analysis of Animal Adaptations<\/a><\/b><\/font><\/dt>\r\nFish adapted to the completely dark, high pressure, very cold deep sea habitat are strange indeed. \r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 30. Glowing in the Dark: Bioluminescence<\/a><\/b><\/font><\/dt>\r\nStudents explore the effect of bioluminescence on communication and concealment in the deep sea, using flashlights to role play schooling behavior. \r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 31. Hydrothermal Vent Food Webs<\/a><\/b><\/font><\/dt>\r\nStudents assemble a hydrothermal vent food web, connecting chemosynthetic bacteria and other vent organisms. \r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n Alternative lab: Cycling in the Hydrothermal Vents<\/a><\/b><\/dd>\r\nFood webs at a hydrothermal vent are illustrated by teams of students. Difference between Photosynthesis and Chemosynthesis is emphasized.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n Unit 6: Hydrothermal Vents<\/u><\/b><\/font>\r\n<\/p>\r\n 32. Hydrothermal Vent Formation <\/a><\/b><\/font><\/dt>\r\nThe creation of hydrothermal vent chimneys is simulated by precipitation of salt from a saturated solution.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n Unit 7: Navigation \u2013 Getting Around on the Ocean<\/u><\/b><\/font>\r\n<\/p>\r\n 33. That Was Then, This Is Now\u2026A Brief History of the World From the<\/dt>\r\nPerspective of Oceanographers.<\/a><\/b><\/font><\/dd>\r\nStudents create a timeline depicting the history of European and Mediterranean peoples\u2019 interactions with the sea. \r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n 34. Meanwhile, in the Pacific\u2026Where Did the Polynesians Come From?<\/a><\/b><\/font><\/dt>\r\nStudents read and compare two theories about the origins of the people who colonized the islands in the Pacific.\r\n <\/a>\r\n<\/p>\r\n<\/dd>\r\n | |